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Abstract. The coarse-grained propagation of Galactic cosmic rays (CRs) is

traditionally constrained by phenomenological models of Milky Way CR propagation

fit to a variety of direct and indirect observables; however, constraining the fine-

grained transport of CRs along individual magnetic field lines – for instance, diffusive

vs streaming transport models – is an unsolved challenge. Leveraging a recent training

set of magnetohydrodynamic turbulent box simulations, with CRs spanning a range

of transport parameters, we use convolutional neural networks (CNNs) trained solely

on gas density maps to classify CR transport regimes. We find that even relatively

simple CNNs can quite effectively classify density slices to corresponding CR transport

parameters, distinguishing between streaming and diffusive transport, as well as

magnitude of diffusivity, with class accuracies between 92% and 99%. As we show, the

transport-dependent imprints that CRs leave on the gas are not all tied to the resulting

density power spectra: classification accuracies are still high even when image spectra

are flattened (85% to 98% accuracy), highlighting CR transport-dependent changes to

turbulent phase information. We interpret our results with saliency maps and image

modifications, and we discuss physical insights and future applications.

1. Introduction

1.1. Cosmic Ray Fundamentals

Galaxies are complex, dynamic systems with collisional components such as gas

reservoirs, and collisionless components that primarily interact through gravity (such

as stars and dark matter). In a broad sense, the collisional composition of galaxies can

be divided as follows: there is non-relativistic, typically ionized gas that we are most

accustomed to thinking about, there are cosmic rays (CRs), which are high-energy,

charged particles that travel through the Universe at close to the speed of light, and

there are magnetic fields, which couple to both non-relativistic gas and relativistic CRs

through electromagnetic forces. Each of these components shapes the gas flows that
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regulate star formation and the long-term evolution of galactic ecosystems, but there

are significant unknowns with each component and their interplay.

In this paper, we concern ourselves with how CRs, on large scales1, transfer

momentum and energy with the surrounding non-relativistic gas, which is very

dependent on the highly uncertain and scale-dependent motion of the CR fluid relative

to the background gas. On very large scales, we can average over many of the smaller,

turbulent fluctuations in the Universe, and therefore average over the tangled magnetic

field lines that guide and scatter CRs. This large-scale, coarse-grained CR propagation

is what is constrained by current state-of-the-art phenomenological models [1]. These

models make informed assumptions on the geometry of the Milky Way, inject CRs

from their likely sources within the Milky Way disk, propagate CRs according to some

plausible paradigms with tune-able parameters, and calculate a variety of direct and

indirect CR indicators: for instance, gamma-ray emission from interactions between

hadrons and CR protons, radio synchrotron emission from spiraling CR electrons, and

secondary products of spallation, the direct collision of CRs with other gas particles

in the Universe. The best configuration, which minimizes the differences between the

model output and real observations, is one in which the coarse-grained transport of

CRs is diffusive and energy-dependent [2, 1]; however, these models cannot tell us the

zoomed-in, fine-grained CR transport along individual field lines.

The fine-grained transport depends on the source and type of hydromagnetic waves

that scatter and confine CRs (see e.g. [3, 4] for recent reviews). If CRs scatter off

compressible fast modes [5] that are created by external turbulence and cascade down

to the CR gyroscale (≈ 0.1 AU for a GeV CR in the Milky Way), then fine-grained CR

transport is believed to be diffusive and predominantly parallel to the local magnetic

field. On the other hand, if the scattering waves are created by the CRs themselves

through the so-called “streaming instability” [6, 7], then CR transport is referred to

as “streaming”, which can be a mixture of field-aligned diffusion and additional field-

aligned advection at the Alfvén speed vA = B/
√
4πρ, where B is the magnetic field

strength and ρ is the gas density.

For a multitude of reasons, identifying the true, fine-grained CR transport mode is

crucial. Despite representing only a billionth of all particles in the Milky Way, CRs on

a whole have as much energy as normal, non-relativistic gas [8], and it is clear from a

veritable explosion of work in the last decade (e.g. [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 4])

that the content of CRs in various astrophysical environments and the dynamical

and thermodynamical influence of CRs on the surrounding gas sensitively depend on

this transport. For example, in simulations of the Large Magellanic Cloud (LMC), a

neighboring satellite galaxy of the Milky Way, if one allows CRs to stream, the galaxy

remains largely intact over long periods of time as CRs easily lose pressure and escape

the galaxy; however, if one replaces streaming with a small diffusivity instead, CRs

build up a large pressure gradient in the galaxy and expel gas in a large-scale “galactic

1On “large” scales, typically greater than a parsec, CRs can be collectively described as a relativistic

fluid instead of individual particles.
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wind” [19]. To reconcile observed galaxy gas contents with simulations and to predict

the future gas content of galaxies, including those like the LMC that will eventually

collide with the Milky Way, we need to know the true mixture of streaming vs diffusive

CR transport.

So how can we determine whether CR transport is streaming or diffusive? One

intriguing approach, motivated by very recent results, is to use the distinct, transport-

dependent imprints that CRs leave on their surroundings. The basis for this idea is that

diffusing and streaming CRs interact with gas fluctuations in fundamentally different

ways. Denoting the CR pressure as PCR, diffusing CRs have flux FCR ∝ ∇PCR, which

introduces a CR perturbed force that is proportional to velocity and creates a π/2 phase

shift between CR pressure and gas density perturbations. Akin to a damped harmonic

oscillator, this damps the waves [20], leading to CR acceleration. Streaming CRs, with

flux FCR ∝ PCR, do not induce such a phase shift and have decreased acceleration rates

[21], but they transfer energy to the gas and can drive unique instabilities, for instance

of acoustic waves in highly magnetized plasmas [22] as seen recently in idealized 1D

simulations [23, 24].

Transport-dependent impacts on gas are also readily apparent in fully 3D

simulations. Bustard and Oh 2023 [25] simulated CR-gas interactions in subsonic,

compressive turbulence and found that turbulent energy spectra change dramatically

depending on CR transport mode, with all other variables (CR pressure, stirring rate,

etc.) held fixed. Namely, when CR diffusion dominates, CRs take energy from the

gas and gain energy themselves2, introducing cut-offs and new slopes to kinetic energy

spectra compared to a no-CR case. CR streaming alters this damping [21], affecting

turbulent spectra, gas thermodynamics, and density structures in a distinctly different

manner [25].

1.2. Goals of this Work

Overall, the Bustard and Oh 2023 simulation suite provides terabytes of unstructured

gas density images stemming from otherwise identical simulations but with different

CR transport assumptions. The primary goal of this paper is to explore whether

deep convolutional neural networks (CNNs) can learn to accurately predict the CR

transport encoded in each image, and more importantly, whether subsequent network

interpretation using image manipulation and saliency maps can help illuminate the

most salient, distinguishing features of gas density maps. To that end, our aim is to

train a CNN to high enough accuracy to enable useful interpretation and reveal new

insights into how CRs affect their surroundings. In the following exploratory analysis,

we use density slices from the Bustard and Oh 2023 simulation suite as our training and

validation data, and we train and fine-tune CNNs using PyTorch [28], a popular and

open-source Python-based deep learning framework, to classify density images into one

of five sets of simulations, varying only in the CR transport model assumed.

2The subsequent CR energy gain is known as turbulent reacceleration [26, 27].
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A second question, which we largely defer to future work, is whether these

neural networks trained on simulations can be used accurately in production with real

observations as inputs. This possibility is quite interesting: instead of requiring the full,

and expensive to acquire, multi-wavelength observations input into phenomenological

models [29, 1], all one theoretically needs are images of HI (neutral hydrogen) density

obtained from a high-resolution survey. Given the highly idealized nature of even these

state-of-the-art turbulence simulations and the significant uncertainty as to whether

idealized simulations capture the density map differences of real observations3, it is

premature to conduct a full study of this possibility. Instead, we discuss this domain

adaptation in Section 5 and briefly show that, in light of our results in Section 3, a

universal challenge complicating all astronomical analyses is especially relevant here:

the depth of 3D structures that forms a 2D image is highly uncertain, and varying this

depth significantly changes the accuracy of our network.

The outline of this paper is as follows. In Section 2, we recap the simulations of

Bustard and Oh 2023, describe the data preprocessing steps we take, and outline the

basic components of our CNN architecture. In Section 3, we present our classification

results, first on the entire fiducial dataset spanning all five classes. We also present

our interpretation of these results using saliency maps, and we probe the limitations of

CNNs further by flattening the power spectra of our images and Gaussian filtering our

input images. In 4.2, we explore how well a network trained on single-cell-thick slices

of a density cube can classify more realistic projections over multiple cells, highlighting

the need for additional training on a larger, realistic, and more diverse image set. We

conclude in Section 5.

Code availability: All Python scripts used in this work are hosted at https:

//github.com/bustardchad/ML_Turb, including descriptive Jupyter notebooks.

Data availability: A subset of data is hosted through the Harvard Dataverse at

https://doi.org/10.7910/DVN/WBY5CX

2. Training Data and CNN Architecture

2.1. Simulation Sets and Labels

The data for this project comes from the Bustard and Oh 2023 turbulent box simulation

suite, and we encourage readers to see Section 2 of [25] for further details. As a

brief recap, these simulations are all run using the Athena++ magnetohydrodynamics

(MHD) code [30] with an additional module that includes CRs as a relativistic fluid

with adiabatic index γc = 4/3 and with energy and flux coupled to the normal MHD

equations (see [31] for more details), including terms for field-aligned CR streaming and

diffusion. The non-relativistic gas is treated as an isothermal (constant temperature)

fluid with adiabatic index γg = 1. Purely compressive turbulence is stirred according to

3For example, simulations may not be sufficiently converged with resolution, or other potentially

dominant complications due to dust or multiphase gas can exist.

https://github.com/bustardchad/ML_Turb
https://github.com/bustardchad/ML_Turb
https://doi.org/10.7910/DVN/WBY5CX
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Class Name CR Transport Parameters

MHD No CRs

CR Advect κ ∼ 0

CR Diff Fiducial κ = κf ∼ 0.1L0cs
CR Diff100 κ = 100κf ∼ 10L0cs
CR withStreaming κ = κf + streaming

Table 1. Class labels and image set names. For each simulation, the following are

constant: β = Pg/PB ∼ 10, η = PCR/Pg ∼ 1 (except η = 0 for the MHD class), the box

size (2L)3, the outer eddy size L0 ∼ 2L/3, and all stirring parameters (see [25]).

an Ornstein-Uhlenbeck random process [32] centered on scale L in a cubic box of size

(2L)3, leading to an effective turbulent outer scale of L0 ≈ 2L/3. In each simulation, the

turbulent stirring rate, correlation time, etc. are all kept fixed, and in this study, we focus

on the simulations that, in absence of CRs, produce a sonic Mach number Ms ∼ 0.15,

defined as the ratio of the turbulent velocity v to the gas sound speed cs. The initial

composite mixture of gas, magnetic fields, and CRs is constant for all simulations, and

has initial gas-to-magnetic pressure ratio β = Pg/PB ∼ 10 and CR-to-gas pressure ratio

η = PCR/Pg ∼ 1, except the MHD-only simulation, for which there are no CRs. The

initial magnetic field configuration is in the x̂-direction. The stirring generates sub-

to trans-Alfvénic (MA = v/vA < 1) turbulence, and with purely compressive forcing

(rather than solenoidal forcing), there is no appreciable amplification of the magnetic

field.

Importantly, compressive motions transfer kinetic energy to the CRs. Prior analyses

showed that the rate of this CR energization depends on CR transport mode and the

gas-to-magnetic pressure ratio β[21], while Bustard and Oh 2023 showed that this

transport-dependent energy transfer affects the turbulent kinetic energy cascade and

the spectra of gas density structures. Namely, there is a “sweet-spot” CR diffusion

coefficient κ ∼ 0.1L0cs where CRs most severely damp turbulent fluctuations, leading

to a steeper spectral slope and a lack of small-scale power in the cascade compared to

simulations with non-optimal CR diffusivity. Our simulation classes are summarized in

Table 1, with example images shown in Figure 1 and with expanded descriptions of each

class given below:

• MHD, a no-CR (η = PCR/Pg = 0) control case. Turbulence in this case is entirely

formed by MHD effects. On well-resolved scales (wave numbers k < 10− 20), there

is significant power, as CRs are not present to play a damping role.

• CR Advect, with roughly equal pressure contributions from CRs and gas (η =

PCR/Pg ∼ 1), but with no CR diffusivity (κ = 0). We refer to this case as CR Advect

because CRs only advect with the gas. The major physical difference, then, is that

the composite CR and gas mixture has an effective equation of state somewhere

between that of the isothermal, non-relativistic gas, where pressure and density

are related by P ∼ ρ, and a relativistic gas, where P ∼ ρ4/3. This slightly affects
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MHD CR_Advect CR_Diff_Fiducial CR_Diff100 CR_withStreaming

MHD CR_Advect CR_Diff_Fiducial CR_Diff100 CR_withStreaming

Figure 1. Example gas density images for each class. The top row shows unaltered

images from the Full Power set, while the bottom row shows another, distinct set of

images after their power spectra have been flattened (from the Flattened Power set).

Note in the top row some of the major differences between CR Diff Fiducial, which

shows very smooth transitions between over- and under-dense gas, and e.g. MHD, which

has sharp transitions and more small-scale structure.

the compressibility of the gas and the resulting density images, but as we see from

Figure 2, the 1D density power spectrum is very similar to the MHD case, suggesting

these classes will be hard to disentangle.

• CR Diff Fiducial, where CRs are present with a fiducial diffusivity κf ∼ 0.1L0cs.

This diffusivity optimizes the energy transfer between gas fluctuations and CRs,

leading to the most significant damping, especially of intermediate wavenumber

fluctuations (see Figure 2).

• CR Diff100, where κ → 100κf . With such a high diffusivity, CRs flow over gas

fluctuations so quickly that they don’t damp them as effectively. This leads to gas

density power spectra intermediate between the MHD and CR Diff Fiducial cases.

• CR withStreaming, which includes both fiducial diffusion and CR streaming. This

case is of particular interest because of the unique changes that streaming imparts

on the turbulence. Instead of CRs taking energy from gas motions and keeping

it, the amount of turbulent damping is lower, and much of the energy that CRs

receive is deposited back into the gas as heat at scales far larger than the typical

dissipation scale. The resulting turbulent energy spectrum does not display such

an obvious cut-off or change in spectral slope, but is instead suppressed almost

uniformly across all scales (see Figure 8 in [25]). If one scales and normalizes the

resulting density images, as we do in this work, the streaming spectrum is almost

exactly the same as the MHD, CR Advect, and CR Diff100 spectra, as we see in

Figure 2.
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Figure 2. Average 1D gas density power spectra (further multiplied by k2) over a

batch of 512 images from the test set, showing noticeable spectral differences between

CR Diff Fiducial and other sets but relatively small differences between the other

CR sets.

Figure 3. Cartoon showing how each data snapshot with total volume of (2L)3 is

split into training, validation, and test sets. Our training set occupies a volume of

(2L×2L×5L/6), while our validation and test sets are 2.5 times smaller with volumes

of (2L × 2L × 2L/6). Each set is spatially separated from other sets by a buffer of

width L/6 in the x̂ direction to decrease correlations. Within each set, images of size

128 × 128 cells are created by slicing in the y-z plane, perpendicular to the initial

magnetic field B⃗.
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2.2. Training Data and Preprocessing

Each simulation snapshot contains 5123 cells, and for each simulation class, we utilize

6 time snapshots temporally separated by at least an (outer-scale) eddy turnover time

to ensure snapshots are sufficiently uncorrelated. Our process for splitting these data

cubes into images largely follows that of [33], who similarly analyzed MHD turbulence

simulations to classify sub-Alfvénic vs super-Alfvénic regimes. To create our image sets,

we cut the box into 512 one-cell-thick slices of dimension 512 × 512 in the y-z plane

(transverse to the initial guide magnetic field), and from each of those slices, we create

16 images of size 128× 128.

Since eddies in magnetized turbulence are elongated along the background magnetic

field direction x̂ [34], slices in the x-z or x-y planes will contain imprints of the original

magnetic field. The extent of this eddy anisotropy, which imprints on gas density images,

would not bias our analysis because it is indeed a physical outcome of our simulations

that start from exactly the same initial conditions. Nevertheless, to ensure that this

anisotropy, which is dominantly caused by magnetic field effects rather than CR effects,

is not a feature that our network can use to distinguish different CR transport modes,

we follow [33] and slice across the magnetic field axis, forcing the network to find other

distinguishing image characteristics more likely to be caused by CRs.

We also note here that, by taking a one cell thick slice, we are effectively integrating

over structures on the scale of a simulation cell width. How well this reflects the

projection depth of a real astronomical image is complicated and very dependent on

the astrophysical environment, as we discuss in Section 4.2. In this paper, however,

we focus on how neural network interpretation can help us derive new insights from

simulations, and our slicing choice is sufficient.

From here, we must be careful to spatially separate the training, validation, and

test slices so that structures correlated in the x̂-direction do not bleed between sets

and introduce correlations. To decrease the chances of this, we put spatial buffers

between the training, validation, and test sets. The training set occupies a width of

5L/6, followed by a buffer of width L/6, then a validation set of width 2L/6, then a

buffer, then a test set of width 2L/6, then a final buffer (Figure 3). Our results do not

seem particularly sensitive to buffer size, except in the case with no buffer where our

saliency maps (Section 3.2) were dominated by pixel-scale regions, indicative of the CNN

“memorizing” regions of the training set that were correlated with the validation set.

This problem was particularly evident when we created training and validation sets by

randomly choosing slices from the 3D data volumes; in this case, structures very much

span across images from both sets, leading to a network with no ability to generalize

to unseen data. An alternative way to split training, validation, and test sets could

be to separate them temporally. For instance, training data could comprise snapshots

1-4, validation snapshot 5, and test snapshot 6; however, this means images within each

set are not well-separated in time. By instead creating sets that span across all times

available, our network is trained, validated, and tested on more diverse manifestations
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of the turbulent gas-CR interactions.

Within each set, we fiducially keep half of the images; we primarily do this to keep

our dataset sizes small enough to be loaded into RAM, but this can also help decrease

spatial correlations within each set. To further decrease correlations, we randomly flip

the images both horizontally and vertically, each with a 50% probability. In all, our

fiducial training, validation, and test sets contain ∼ 10,000, 4,000, and 4,000 images per

class (50,000, 20,000, and 20,000 total). Each image is then preprocessed as follows:

(i) The density is logarithmically scaled. Because turbulent density probability

distribution functions (PDFs) are roughly lognormal, this scaling brings out more

features that would otherwise be sub-dominant compared to the most dense regions.

(ii) The images are histogram equalized using the exposure method from scikit-image

[35] such that image pixels have a roughly equal distribution of values from 0 to

1. As noted in [33], this step is a common preprocessing step used to optimize the

CNN, but it eliminates density PDF information from our images. With one of

our goals to see if neural networks can find information beyond PDF and spectral

information, this is perfectly acceptable.

Images processed in this way encompass our Full Power image set in that they

retain spectral information. As in [33], we also create a Flattened Power image set

with no spectral information by applying a fast Fourier transform to each image and

setting the Fourier power to unity; this happens in between steps (i) and (ii) above. In

this case, the neural network is left to only distinguish image classes based on image

phase information.

2.3. Neural Network Details

Convolutional neural networks (CNNs) are a powerful deep learning architecture for

computer vision, and as they have now been employed for various tasks in astrophysics,

we do not give a long introduction to them here. Instead, we describe the key

components and our choices for number of layers, number of trainable parameters, etc.,

and refer the audience to a recent review of deep learning in astrophysics (i.e. [36]).

The building blocks of CNNs are convolution layers, pooling layers, and fully

connected layers, followed in this classification application by a softmax output layer

that generates a probability of the input image belonging to each class. For the results

presented here, we use 4 convolutional layers, each followed by batch normalization and

SiLU activations. These layers take an input array (in the first layer, this input is the

128×128 image), and apply filters to sub-patches of the input, thereby generating many

convolutions of the input. Batch normalization then normalizes the layers’ inputs by

re-centering and re-scaling them, making training faster and more stable.

After these 4 convolution layers, we apply a pooling layer and then apply dropout

with 25% probability. We then flatten the output before sending it to a fully connected

layer, where all neurons from the previous layer are connected to all neurons of the next



Deep Learning Cosmic Ray Transport 10

layer. The output of this final layer, after going through a softmax activation, is a vector

of probabilities that the input image corresponds to each class. For our full model with

5 classes, this vector has a length of 5, and when we make our final prediction of which

class the image came from, we choose the class with highest probability.

All-in-all, this fiducial network, containing 29,749 trainable parameters, is

appropriately sized for our dataset of ∼ 50, 000 training images; adding more layers

leads to overfitting (high accuracy on training data but poor generalization to unseen

data), while decreasing the number of layers leads to underfitting (poorer accuracy on

training data). Networks for the Full Power and Flattened Power datasets are trained

for 40 and 25 epochs, respectively, beyond which the models begin to overfit.

To speed up training, we employ mini-batch gradient descent with 64 images per

batch. Weights and biases are updated during training using the AdamW optimizer [37]

with weight decay of 10−4 and a learning rate of 10−3 in the Full Power case and 5×10−4

in the Flattened Power case. This gradient descent method, which is a modification

to the popular Adam method [38], decouples weight decay from the gradient update

steps and improves generalization performance. The loss function that AdamW seeks

to minimize is the cross-entropy loss between the predicted distribution and the true

class distribution.

All of the above choices were motivated by a limited, manual hyperparameter study,

where we varied the learning rate between 10−3 and 10−4, the batch size between

8 and 256, and the dropout fraction between 0 and 0.5. We also tested the ReLU

activation function instead of the SiLU activation function in hidden layers of our

network, ultimately finding insignificant differences in training time and accuracy. The

continuously differentiable SiLU behaves similarly to other activation functions (e.g.,

[39, 40, 41]), which are robust against the “dying neuron” problem with ReLU, and

have been shown to improve performance in astronomical tasks (e.g., [42, 43]).

3. Results

3.1. Full Spectra Results

In Table 2, we display several commonly used metrics for multi-class machine learning

problems, which depend on the number of true positives (TP), true negatives (TN),

false positives (FP), and false negatives (FN). The accuracy is defined as (TP + TN) /

(TP + TN + FP + FN), the precision is defined as the TP / (TP + FP), the recall is

defined as the TP / (TP + FN), and the F1 score is the harmonic mean between the

precision and recall. The precision can be considered a measure of “purity” while the

recall can be thought of as “completeness” for CNN predictions. Figure 4 shows the

confusion matrix for the Full Power test set, created with scikit-learn [44] and showing

raw counts of images with predicted vs true labels.

The accuracy for each class is quite high, ranging from 92.0% for CR Diff100 to

99.2% for CR Diff Fiducial. Precision and recall vary more significantly, leading to
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Data set Accuracy Precision Recall F1-Score

Full Power

MHD 95.5 99.5 77.9 87.4

CR Advect 95.6 82.8 98.4 89.9

CR Diff Fiducial 99.2 96.0 100.0 98.0

CR Diff100 92.0 77.7 84.2 80.8

CR withStreaming 94.2 89.4 80.8 84.9

Flattened Power

MHD 88.5 99.6 42.8 59.9

CR Advect 96.7 96.7 86.4 91.2

CR Diff Fiducial 97.9 99.7 89.8 94.5

CR Diff100 90.2 72.5 82.4 77.1

CR withStreaming 85.7 58.7 96.2 72.9

Table 2. A table of metrics comparing classification results on Full Power simulations

and on Flattened Power simulations. The accuracy, precision, recall, and F1 scores

are shown as percentages.

generally lower F1 scores. For instance, recall ranges from ∼ 78% for the MHD class

to 100% for the CR Diff Fiducial class, but especially for the MHD class, low recall is

compensated by high precision (99.5% for MHD). This tendency for a CNN to trade recall

for precision or vice versa is a common and nonlinear behavior; therefore, it is critical

to report multiple summary statistics and combined metrics like the F1 score4.

The average recall is 88.3%, brought down most significantly by the MHD case, which

is confused for other classes 22% of the time. In particular, MHD is incorrectly labeled

as CR Advect 11.4% of the time and as CR Diff100 8.9% of the time. These confusions

make physical sense: advecting CRs do not sap any energy from turbulent fluctuations.

Instead, the inclusion of CRs only changes the composite gas+CR equation of state

because relativistic CRs have a γ = 4/3 adiabatic index instead of a γ = 5/3 index

for a non-relativistic gas. The resulting images are quite comparable. CRs with large

diffusivity (CR Diff100) do not appreciably interact with fluctuations either; their fast

transport (on a short diffusive timescale τdiff ∼ L2/κ) means they pass over the flow too

quickly for eddies to interact with the CRs during an eddy turnover time τeddy ∼ L/v,

essentially leaving turbulence and the resulting density image untouched.

One might wonder whether the MHD simulations are necessary when, for instance,

we know quite certainly that MHD-only is a poor approximation in the Milky Way

interstellar medium where PCR ∼ Pg [8]. To test this scenario, we also trained and

4In practice, one could change the softmax function in our network to include a tunable parameter

α, i.e. softmax(α,z) = exp(-αz)/
∑

zexp(-αz), and evaluate the F1 score on the validation set over a

grid of α values to find the optimal trade-off between precision and recall averaged over all classes.

However, this does not guarantee that one will find an α that simultaneously maximizes the F1 score

for each individual class, and we proceed with a default value of α = 1.
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Figure 4. Confusion matrix for the Full Power set of test images, showing the

fraction of images in each predicted class vs their true class. Fractions are obtained by

taking the raw number of images in each category and dividing by 3981, the number

of images per class. Class accuracies range from 92.0% for the CR Diff100 class to

99.2% for the CR Diff Fiducial class, which also achieves a perfect recall (see Table

2). The average recall is ≈ 88.3%, brought down significantly by the MHD images.

fine-tuned networks on only the 4 CR classes. For brevity, we do not show the resulting

confusion matrix, but we note that we obtained very similar statistics with only slightly

boosted F1 scores. This implies that the full, 5-class network is capable of discriminating

between CR classes, despite being presented with confusing MHD images.

Most impressively, the CR Diff Fiducial and CR withStreaming classes, which

differ only in that CR streaming is included in addition to fiducial diffusivity, are well-

distinguished, with the network achieving 94.2% accuracy on CR withStreaming and

only rarely (3.4% of the time) confusing CR withStreaming for the CR Diff Fiducial

class. Instead, CR withStreaming is confused for CR Diff100≈ 14.5% of the time, likely

because additional CR streaming means CRs are propagating faster along field lines,

somewhat akin to faster diffusion. How fast is streaming transport? In these simulations,

turbulence is sub-Alfvénic, meaning the characteristic CR transport speed (the Alfvén

speed vA) is faster than the turbulent velocity5, meaning the CR transport time τstream ∼
5In fact, this characteristic transport speed is a lower limit only realized when CRs are well-coupled

to Alfvén waves, which only occurs when CR pressure gradients are aligned with the magnetic field.

In turbulence, these vectors are frequently misaligned [21], leading to macroscopic CR decoupling from

waves and the so-called “bottleneck effect”, where CRs free-flow at relativistic speeds and develop a
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L/vA < L/v ∼ τeddy, similar to the fast diffusion case where τdiff ∼ L2/κ < L/v ∼ τeddy.

Previous work [25], however, hints that additional discriminating information will

be present, such as transport-dependent ratios of compressive vs solenoidal motions

in the gas, which likely accounts for some of the accurate differentiation between

CR withStreaming and other CR classes. In all, the accuracies we obtain with our

relatively simple network are high enough to continue with network interpretation,

and misclassification trends shown by our confusion matrices already reveal distinct

differences between some classes and interesting morphological overlaps between others.

3.2. Network Interpretation

We employ a combination of techniques to further interpret our results. First, we

produce a set of saliency maps, which essentially show the regions of an image that

produce large network activations (large gradients stored during backpropagation)

leading to a final prediction. The first set of saliency maps, shown in Figure 5, is

for the fiducial Full Power network trained on data from all 5 classes. Each column

shows one example image from each class in grayscale (the same example images in

Figure 1), and each row shows the activations from each class when presented with that

image. These activations are overplotted with a white-to-red colormap. For improved

readability compared to showing the pixel-by-pixel saliency, they are Gaussian filtered

with kernel size = 16 and standard deviation σ = 4 (in units of number of pixels,

meaning the kernel size and standard deviation are L/4 and L/16, respectively) using

the Scipy gaussian filter routine. The density images themselves have not been

Gaussian filtered. Note also that activations for each image are also normalized to the

range [0,1]; this makes visualizing very small activations easier but misrepresents the

relative magnitudes of activations for different classes.

While it’s difficult to immediately see a trend, after looking at enough image sets,

one can convince themselves that the most salient features of the CR Diff Fiducial

images are the broad, diffuse gray regions most unique to that class. Instead, sharp

transitions are apparent in each of the MHD, CR Advect, and CR Diff100 images. Because

the sharp features are not unique to any one class, they don’t appear in our saliency

maps. One might notice, however, that the CR Diff Fiducial saliency correlates well

with gray regions.

It is hard to discern a trend that further distinguishes the MHD, CR Advect, and

CR Diff100, and CR withStreaming classes despite applying saliency maps to a wide

range of image sets, changing the color map, etc. One possible explanation is that

the higher-level, distinguishing information is imprinted as a change in correlation over

scales rather than as a change to a local structure with well-defined boundaries, the

former being very typical in physics and the latter being the typical use-case of saliency

maps for e.g. object classification or detection [46, 47].

flat pressure gradient unable to transfer momentum and energy to the gas [45, 10].
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Figure 5. Saliency maps for the example Full Power images of Figure 1. Each row

shows the same image from a given class, while each column shows activations for each

of the 5 classes when the trained network is presented with that image. Activations

are Gaussian smoothed instead of shown pixel-by-pixel, and they are normalized to

the range [0,1], which amplifies otherwise small activations for some classes.

When we instead train a model with the same network architecture but only on

the MHD and the CR Diff Fiducial images, network accuracy on the test set is > 99%

for both classes (we omit a confusion matrix for brevity), showing the drastic changes

imparted by diffusing CRs. Figure 6 shows 6 example images from each class and

activations for the predicted class now shown as yellow contours of constant saliency.

For example, images in the top row all belong to the MHD class, and all yellow contours

in that row show the activations for the MHD prediction. Across all 12 images, it’s
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Figure 6. Image examples and overlaid saliency contours for a neural network

trained on just two classes: MHD (top row) and CR Diff Fiducial (bottom row).

Saliency contours are informative here, showing that the MHD images are particularly

distinguished by sharp edges and regions with lots of structure, while the salient

features of the CR Diff Fiducial images are broad, smooth gray regions without much

small-scale structure.

quite obvious that what distinguishes the two classes is the sharpness of black and

white transitions: smooth density transitions and regions without small-scale structure

trigger CR Diff Fiducial predictions, while sharp features generally trigger the MHD

predictions.

To help reveal the image features that led to predictions, we also see how the

network handles a simple image manipulation: we take one test set image belonging

to each class, and we Gaussian filter that image to varying extents by varying σ, the

standard deviation of the Gaussian kernel. Figure 7 shows the original images in the top

row, followed by the more and more Gaussian filtered images going from top to bottom.

On top of each image, we denote the network’s probability that the manipulated image

belongs to the CR Diff Fiducial class. As σ increases, all probabilities converge to 1.0,

showing that the CR Diff Fiducial images are, at least according to the network, the

limit of significant “filtering” due to CR-induced damping of small-scale features.

Figure 8 shows this in a different way. It shows the 1D power spectra (multiplied

by k2 to highlight differences) averaged for each class in a batch of 512 unfiltered test

set images. Clearly, the CR Diff Fiducial class shows less power at intermediate scales

than the MHD class, while the other CR classes have similar spectra. In particular,

the CR Diff100 and CR withStreaming classes have almost identical spectra, possibly

leading to the confusion between those classes. The right panel shows the power

spectra of MHD images filtered to varying extents. Unfiltered images typically have

significant power at large and intermediate scales (small and intermediate wavenumbers,

k) and are classified as CR Diff Fiducial with very low probability. Highly blurred

images, however, lack as much power at k < 10 and are confidently classified as

CR Diff Fiducial.
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Figure 7. Experiment whereby one image from each class (different columns) is

Gaussian filtered to different degrees, parametrized by different standard deviations σ

of the Gaussian kernel. When run through the trained network, the output probability

that the new image belongs to the CR Diff Fiducial class is denoted near the top

of each image. Descending the rows (increasing σ), small-scale structure further

disappears from each image, and for all classes, the images are eventually classified

as CR Diff Fiducial with > 99% confidence.

3.3. Images with Flattened Spectra

Motivated by [33], which showed that a trained CNN can distinguish sub-Alfvénic vs

super-Alfvénic images even when density spectra are flattened (equaled), we flatten

the power spectra of our images (the Flattened Power set) and train a separate

classification network with identical architecture but different hyperparameters. This

is especially interesting given what we have seen so far: that the network can learn

the presence of (or lack of) spectral information, especially for the CR Diff Fiducial

images, which show very little small-scale structure. However, as seen in Figure 2,
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Figure 8. Power spectra of a batch of MHD images Gaussian filtered with

varying σ. Colors denote the probability that the network classified the image as

CR Diff Fiducial. Note the delineating boundary around P (k) ∼ k−2; images with

decreased power at small and intermediate wavenumbers k < 10 are confidently

classified as CR Diff Fiducial, another sign that damping is a distinguishing feature

of that class.

spectral differences between the other classes, namely the MHD, CR Advect, CR Diff100,

and CR withStreaming, are quite small. This suggests the presence of other, non-

spectral distinguishing features. By flattening the power spectra, we can probe this idea

more explicitly and ask the network to find the salient phase information in the images

resulting from CR interactions with gas perturbations.

The resulting confusion matrix for the test set is shown in Figure 9, and example

Flattened Power images are shown in Figure 10. Class accuracies for the Flattened

Power test set are comparable to those for the Full Power test set (see Table 2),

with CR Diff Fiducial again being the most accurately predicted class, although the

recall has dropped from 100% to 89.8% in exchange for a higher precision of 99.7%.

F1 scores amongst the CR classes are again quite high, reaching up to 94.5% for

CR Diff Fiducial. The most obvious change from the Full Power case is that the

MHD and CR withStreaming F1 and accuracy scores dip significantly (by more than a

few percent) when their spectra are flattened. Indeed the main differences between the

confusion matrices (Figures 4 and 9) are the mistaken predictions of CR withStreaming

when the true class is MHD.

To reason why these summary statistics have changed, we must consider the

physical, distinguishing characteristics that might exist even in the absence of spectral
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Figure 9. Confusion matrix for the Flattened Power set of test images. Accuracies

range from ∼ 85− 98%; As all images have flattened power spectra now, clearly, CRs

impart distinguishing phase changes to the turbulent flow that the network appears

to learn. The MHD case again is the least reliable, with a low recall of 42.8% and

frequent confusion with the CR Diff100 and CR withStreaming classes.

information. For instance, in sub-Alfvénic turbulence, even with purely compressive

forcing, spatial and spatial-temporal decompositions show that a significant portion of

the energy lies in Alfvén modes [48, 49], with solenoidal motions being generated by a

combination of compressive motions and magnetic forces [50]. CRs, in a transport-

dependent way, have been shown to affect the ratio of solenoidal energy Esol to

compressive energy Ecomp and the scale-dependent mixture of these motions (see Section

4.5 of [25]). This in-turn influences the morphology of density fluctuations: sharp, shock-

like features indicate compressions and rarefactions, while “swirls” indicate solenoidal

motions.

Bustard and Oh 2023 measure Esol/(Ecomp + Esol) ∼ 0.42, 0.36, and 0.67 for the

MHD, CR Diff Fiducial, and CR withStreaming classes, respectively. The increased

fraction of solenoidal power in the CR withStreaming case should be well-imprinted in

the Flattened Power image set, but the low precision of 58.7% for CR withStreaming

suggests otherwise. One possible reason is that the increase in solenoidal power is

most acute at large scales ∼ L and almost negligible at smaller scales (see Figure 10

in [25]), meaning it might not be well-reflected in our images of size L/2 × L/2. On

the other hand, the CR Diff Fiducial class is well-separated from the others despite
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having an almost identical Esol/(Ecomp+Esol) to the MHD case. If the distinguishing image

characteristics are due to solenoidal vs compressive motions, the network must be quite

sensitive to them for some classes but not others. We caution, however, that even in the

no-CR case, the mixture of modes in MHD turbulence is not well understood and is an

active area of research. How CR transport further affects turbulent phase information

and gas morphology is still a very open problem.

Alternatively, the confusion between MHD and CR withStreaming in the Flattened

Power set but not the Full Power set may simply mean the differences are largely

spectrum-related rather than phase-related. As evidenced by Figure 8, there are some

small differences between the image spectra that may have been critical in the Full

Power case but have now been thrown out in our Flattened Power study.

To try to interpret our network, we again employ saliency maps on a set of example

images in Figure 10. By eye, the MHD and CR Advect image sets show long narrow

features indicative of strong compression fronts, while the CR Diff Fiducial image

lacks this sharp structure. However, these differences are not necessarily activated

by our saliency experiment, as was the case for our Full Power data set. The

CR withStreaming activations, however, consistently line up with strong line features

across several example images from different classes. That these are seemingly such

strong indicators of streaming CR transport is encouraging in our quest to determine

the true CR transport mode in different astrophysical environments; however, these

features also bear strong resemblance to the compression fronts in the MHD images, and

significant confusion between those classes may be related to these similar features.

We experimented with a few other interpretability tools, most notably occlusion

experiments where one asks the network to predict an image with obscured regions

(ideally regions where salient features are present), but no experiments to-date have

gleamed much new information. For brevity, we stop our exploratory analysis here, but

follow-up studies can probe the origin of distinguishing, non-spectral features, which are

possibly related to the CR transport-dependent mixture of solenoidal and compressive

motions found in Bustard and Oh 2023. Related work using wavelet scattering

transforms, which construct similar representations as CNNs (e.g. [51, 52, 53]), has

demonstrated the importance of encoding phase information and scale separation.

Additional image manipulations and explicitly adding image spectra as an extra input to

the Flattened Power model would be useful next steps to reveal and isolate additional

distinguishing features and gain deeper insights on CR-induced differences.

4. Limitations and Future Work

4.1. Simulation Limitations

While our results are promising, this method is not without its limitations. The biggest

issue we hope to tackle in future work is domain adaptation: can this network, trained

on simulation data, generate accurate predictions when deployed on real observations?
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Figure 10. Same as Figure 5 but for example images from the Flattened Power

test set. Many of the same regions are activated for each class; however, when looking

at the activations for the true class, it’s apparent in some cases that certain, isolated

features drive the prediction. See e.g. CR withStreaming, in which case the true

prediction map (“Saliency for CR withStreaming”) shows a high activation in only

one small area, whereas activations for other classes are more spread out.

For this supervised learning algorithm to back out CR transport from observations,

we require the “ground truth” given to us by simulations, but the simulations have a

number of restrictions that could limit our machine learning model’s ability to generalize

to observations:

(i) Physics choices: For instance, these simulations use an isothermal equation of

state instead of an adiabatic equation of state with realistic radiative cooling,

conduction, self-gravity, etc. Additionally, ensuring the correct ionization state

of the gas is crucial to making a robust connection to observations, but this is very
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environment-specific and dependent on the local distribution of nearby massive

stars, etc.

(ii) Simulation parameter coverage: For instance, the results shown here are

trained on a simulation suite with a number of parameters fixed – the stirring

rate, the initial plasma beta, etc. One could increase the span of the training data

across different parameters, but the data volume would quickly become very large.

(iii) Simulation convergence: Bustard and Oh 2023 conducted a limited convergence

study, showing that the main transport-dependent trends (CR-induced damping

of small-scale fluctuations, etc.) are robust to changes in resolution; however,

increasing resolution will always lead to more small-scale structure because the

turbulent inertial range, which artificially dissipates in simulations on length scales

of ≈ 30 cell widths [54], extends to smaller scales. Higher resolution simulations,

being more computationally intensive, are not possible at this point, but in the

future, one might create a more robust network by training it on simulations with

varying resolution.

One could also map simulations to observations more closely by folding in additional

telescope effects during preprocessing, but this depends on the case-by-case telescope

instrumentation and is beyond the scope of this paper.

4.2. Sensitivity to Projection Depth

Alleviating the issues above will require additional simulations. With our existing

simulation suite, though, we can quickly explore another limitation: our use of single-

cell-thick slice plots as training data, rather than projections that integrate further along

our line-of-sight. To test this, we create two additional image sets by averaging over

d cells perpendicular to the image plane, rather than creating images from single-cell

slices. The resulting test sets have roughly 3, 800 and 760 images per class for d = 8

and 32, respectively.

Figure 11 shows confusion matrices when our model (pre-trained on slices) is asked

to predict images with d = 8 and 32. In both cases, the model can very accurately

classify the CR Diff Fiducial images, but as the depth increases, overall accuracy

decreases significantly. This is most true for the MHD images, which show the crux of the

issue: averaging / projecting over multiple layers smooths out the small-scale structure

that distinguishes the other classes, particularly the MHD class, from the others.

If there is a significant gap between the training projection depth and the

test projection depth, then accuracy can degrade significantly. This is not entirely

unexpected, since this “model misspecification” or “domain shift,” i.e. applying a model

trained on one dataset to another, is an active and unsolved area of research (although

there have been recent promising results in domain adaptation for astronomical machine

learning; e.g. see [55]).

It is possible to increase our accuracy by training a model specifically on images

with the same projection depth as in the validation set, thereby bypassing the model
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Figure 11. Confusion matrix for our pre-trained Full Power model applied to images

created by averaging over d = 8 cells (left) and d = 32 cells (right) along the x̂-

axis. Note how accuracies decrease significantly, particularly for classes that originally

were characterized by sharp density gradients and small-scale structure; these salient

features are smoothed out when averaging over more and more layers, leading to

numerous misclassifications.

misspecification problem. However, this is unlikely to be helpful in real observations

of turbulent gas clouds, which are subject to uncertain distance measurements [56].

Moreover, we do not have strong constraints on how far we can see into the gaseous

structure (i.e. the optical depth), which means that we cannot estimate a priori the

number of turbulent eddies that we would expect to see in the line-of-sight direction and,

therefore, cannot determine an appropriate simulation projection depth d to compare

to.

Overall, given the critical differences between current simulations and real

observations, challenges associated with observational uncertainties, and the problem

of domain shift in supervised machine learning, we caution against directly applying

our method to real data. However, our publicly available code can serve as a useful

framework for data preprocessing and model training, while our publicly available

data volumes, which are scale-free and can therefore be scaled up or down to different

astrophysical regimes depending on the turbulent driving scale L0, can serve as a useful

comparison to more detailed simulations in the future.

5. Conclusions

Deducing CR transport physics from observations is a massive undertaking, involving

phenomenological models fit to direct and indirect CR observables [1], galaxy and zoom-

in cosmological simulations compared to radio synchrotron and gamma-ray emission

[57, 58], and focused probes of CR penetration in cold molecular clouds [59, 60, 61, 16]

and CR transport along radio-emitting filaments [62]. All of these research avenues rely

on multi-wavelength data, e.g. high-energy emission from radio emitting CR electrons or

gamma-ray emission arising from hadronic interactions of thermal gas with CR protons.
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An alternative, and to our knowledge unexplored, avenue is to harness recent advances

in deep learning and a growing amount of simulation data to train a network to recognize

CR transport physics from solely density images.

In this paper, we trained and fine-tuned multi-layer convolutional neural networks

(CNNs) on a suite of turbulent box simulations [25] with varying CR transport

prescriptions from pure CR advection to CR diffusion to CR streaming. We also

use interpretability tools like saliency maps and image manipulation to interpret these

results and to help build physical intuition for CR impacts on turbulence.

The main findings of this work are:

• Our trained CNN can classify images originating from simulations with 5 different

CR transport prescriptions with high class accuracies ranging from 92.0% to 99.2%

and F1 scores ranging from 80.8% to 98.0%. The average recall is brought down

most significantly by the MHD-only (no CR) simulations, whose resulting density

images closely resemble those with either very little or very fast CR transport.

• Images derived from simulations with intermediate diffusivity, i.e. CR Diff Fiducial,

are most accurately classified (99.2%). Saliency maps (Figures 5 and 6) identify

smooth, rather than sharp, density contrasts as distinguishing features of these

images, owing to strong CR-induced damping of small-scale turbulent fluctuations

[25] that effectively Gaussian filters or “blurs” the image (Figure 7).

• Streaming and diffusion lead to distinctly different images and are only rarely

confused by our trained network (Figure 4); however, there is some confusion

between streaming transport and fast diffusive transport.

• Images with flattened power spectra are also classified with high accuracies (85.7-

97.9%), suggesting that CRs change both spectral and phase information, as would

be the case if CRs affect the balance between compressive and solenoidal motions

as found in [25]. In particular, saliency maps (Figure 10) reveal that the network

consistently associates streaming transport with strong lines in spectrally flattened

gas density images.
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